Syntaxin 5 Is a Common Component of the NSF- and p97-Mediated Reassembly Pathways of Golgi Cisternae from Mitotic Golgi Fragments In Vitro

نویسندگان

  • Catherine Rabouille
  • Hisao Kondo
  • Richard Newman
  • Norman Hui
  • Paul Freemont
  • Graham Warren
چکیده

A cell-free system that mimics the reassembly of Golgi stacks at the end of mitosis requires two ATPases, NSF and p97, to rebuild Golgi cisternae. Morphological studies now show that alpha-SNAP, a component of the NSF pathway, can inhibit the p97 pathway, whereas p47, a component of the p97 pathway, can inhibit the NSF pathway. Anti-syntaxin 5 antibodies and a soluble, recombinant syntaxin 5 inhibited both pathways, suggesting that this t-SNARE is a common component. Biochemical studies confirmed this, showing that p47 binds directly to syntaxin 5 and competes for binding with alpha-SNAP. p47 also mediates the binding of p97 to syntaxin 5 and so plays an analogous role to alpha-SNAP, which mediates the binding of NSF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Role for the Vesicle Tethering Protein, P115, in the Post-Mitotic Stacking of Reassembling Golgi Cisternae in a Cell-Free System

During telophase, Golgi cisternae are regenerated and stacked from a heterogeneous population of tubulovesicular clusters. A cell-free system that reconstructs these events has revealed that cisternal regrowth requires interplay between soluble factors and soluble N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) attachment protein receptors (SNAREs) via two intersecting pathways controlled...

متن کامل

VCIP135 acts as a deubiquitinating enzyme during p97–p47-mediated reassembly of mitotic Golgi fragments

The AAA-ATPase p97/Cdc48 functions in different cellular pathways using distinct sets of adapters and other cofactors. Together with its adaptor Ufd1-Npl4, it extracts ubiquitylated substrates from the membrane for subsequent delivery to the proteasome during ER-associated degradation. Together with its adaptor p47, on the other hand, it regulates several membrane fusion events, including reass...

متن کامل

Sequential SNARE disassembly and GATE-16–GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion

Characterization of mammalian NSF (G274E) and Drosophila NSF (comatose) mutants revealed an evolutionarily conserved NSF activity distinct from ATPase-dependent SNARE disassembly that was essential for Golgi membrane fusion. Analysis of mammalian NSF function during cell-free assembly of Golgi cisternae from mitotic Golgi fragments revealed that NSF disassembles Golgi SNAREs during mitotic Golg...

متن کامل

Monoubiquitination of Syntaxin 5 Regulates Golgi Membrane Dynamics during the Cell Cycle.

The Golgi apparatus undergoes a ubiquitin-dependent disassembly and reassembly process during each cycle of cell division. Here we report the identification of the Golgi t-SNARE syntaxin 5 (Syn5) as the ubiquitinated substrate. Syn5 is monoubiquitinated by the ubiquitin ligase HACE1 in early mitosis and deubiquitinated by the deubiquitinase VCIP135 in late mitosis. Syn5 ubiquitination on lysine...

متن کامل

An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic golgi fragments

Golgi cisternae regrew in a cell-free system from mitotic Golgi fragments incubated with buffer alone. Pretreatment with NEM or salt washing inhibited regrowth, but this could be restored either by p97, an NSF-like ATPase, or by NSF together with SNAPs and p115, a vesicle docking protein. The morphology of cisternae regrown with p97 and NSF-SNAPs-p115 differed, suggesting that they play distinc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 92  شماره 

صفحات  -

تاریخ انتشار 1998