Syntaxin 5 Is a Common Component of the NSF- and p97-Mediated Reassembly Pathways of Golgi Cisternae from Mitotic Golgi Fragments In Vitro
نویسندگان
چکیده
A cell-free system that mimics the reassembly of Golgi stacks at the end of mitosis requires two ATPases, NSF and p97, to rebuild Golgi cisternae. Morphological studies now show that alpha-SNAP, a component of the NSF pathway, can inhibit the p97 pathway, whereas p47, a component of the p97 pathway, can inhibit the NSF pathway. Anti-syntaxin 5 antibodies and a soluble, recombinant syntaxin 5 inhibited both pathways, suggesting that this t-SNARE is a common component. Biochemical studies confirmed this, showing that p47 binds directly to syntaxin 5 and competes for binding with alpha-SNAP. p47 also mediates the binding of p97 to syntaxin 5 and so plays an analogous role to alpha-SNAP, which mediates the binding of NSF.
منابع مشابه
A Role for the Vesicle Tethering Protein, P115, in the Post-Mitotic Stacking of Reassembling Golgi Cisternae in a Cell-Free System
During telophase, Golgi cisternae are regenerated and stacked from a heterogeneous population of tubulovesicular clusters. A cell-free system that reconstructs these events has revealed that cisternal regrowth requires interplay between soluble factors and soluble N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) attachment protein receptors (SNAREs) via two intersecting pathways controlled...
متن کاملVCIP135 acts as a deubiquitinating enzyme during p97–p47-mediated reassembly of mitotic Golgi fragments
The AAA-ATPase p97/Cdc48 functions in different cellular pathways using distinct sets of adapters and other cofactors. Together with its adaptor Ufd1-Npl4, it extracts ubiquitylated substrates from the membrane for subsequent delivery to the proteasome during ER-associated degradation. Together with its adaptor p47, on the other hand, it regulates several membrane fusion events, including reass...
متن کاملSequential SNARE disassembly and GATE-16–GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion
Characterization of mammalian NSF (G274E) and Drosophila NSF (comatose) mutants revealed an evolutionarily conserved NSF activity distinct from ATPase-dependent SNARE disassembly that was essential for Golgi membrane fusion. Analysis of mammalian NSF function during cell-free assembly of Golgi cisternae from mitotic Golgi fragments revealed that NSF disassembles Golgi SNAREs during mitotic Golg...
متن کاملMonoubiquitination of Syntaxin 5 Regulates Golgi Membrane Dynamics during the Cell Cycle.
The Golgi apparatus undergoes a ubiquitin-dependent disassembly and reassembly process during each cycle of cell division. Here we report the identification of the Golgi t-SNARE syntaxin 5 (Syn5) as the ubiquitinated substrate. Syn5 is monoubiquitinated by the ubiquitin ligase HACE1 in early mitosis and deubiquitinated by the deubiquitinase VCIP135 in late mitosis. Syn5 ubiquitination on lysine...
متن کاملAn NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic golgi fragments
Golgi cisternae regrew in a cell-free system from mitotic Golgi fragments incubated with buffer alone. Pretreatment with NEM or salt washing inhibited regrowth, but this could be restored either by p97, an NSF-like ATPase, or by NSF together with SNAPs and p115, a vesicle docking protein. The morphology of cisternae regrown with p97 and NSF-SNAPs-p115 differed, suggesting that they play distinc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 92 شماره
صفحات -
تاریخ انتشار 1998